Fast adaptive eigenvalue decomposition: a maximum likelihood approach

نویسندگان

  • Christian Riou
  • Thierry Chonavel
چکیده

In this paper, we address the problem of adaptive eigenvalue decomposition (EVD). We propose a new approach, based on the optimization of the log-likelihood criterion. The parameters of the log-likelihood to be estimated are the eigenvectors and the eigenvalues of the data covariance matrix. They are actualized by means of a stochastic algorithm that requires little computational cost. Furthermore, the particular structure of the algorithm, that we named MALASE, ensures the orthonormality of the estimated basis of eigenvectors at each step of the algorithm. MALASE algorithm shows strong links with many Givens rotation based update algorithms that we discuss. We consider convergence issues for MALASE algorithm and give the expression of the asymptotic covariance matrix of the estimated parameters. The practical interest of the proposed method is shown on examples. ? 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms

Multivariate Gaussian models are widely adopted in continuous Estimation of Distribution Algorithms (EDAs), and covariance matrix plays the essential role in guiding the evolution. In this paper, we propose a new framework for Multivariate Gaussian based EDAs (MGEDAs), named Eigen Decomposition EDA (ED-EDA). Unlike classical EDAs, ED-EDA focuses on eigen analysis of the covariance matrix, and i...

متن کامل

On an Adaptive Coarse Space and on Nonlinear Domain Decomposition

We consider two different aspects of FETI-DP domain decomposition methods [8, 23]. In the first part, we describe an adaptive construction of coarse spaces from local eigenvalue problems for the solution of heterogeneous, e.g., multiscale, problems. This strategy of constructing a coarse space is implemented using a deflation approach. In the second part, we introduce new domain decomposition a...

متن کامل

Regularized Gaussian Discriminant Analysis through Eigenvalue Decomposition

Friedman has proposed a regularization technique RDA of discriminant anal ysis in the Gaussian framework RDA makes use of two regularization parameters to design an intermediate classi cation rule between linear and quadratic discriminant analysis In this paper we propose an alternative approach to design classi cation rules which have also a median position between linear and quadratic discrim...

متن کامل

An Adaptive Subspace Filter for Noise Reduction

In this paper, we present a novel structure for adap-tive noise ltering based on subspace methods. Our approach requires no eigenvalue or singular value decomposition to obtain the principal signal components. In addition, only the noisy signal, and no reference signal is needed. A modiied RLS adaptive algorithm is proposed which approximately performs the principal component analysis of the no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997